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Abstract

Pedestrian detection is a problem of considerable prac-

tical interest. Adding to the list of successful applications

of deep learning methods to vision, we report state-of-the-

art and competitive results on all major pedestrian datasets

with a convolutional network model. The model uses a few

new twists, such as multi-stage features, connections that

skip layers to integrate global shape information with local

distinctive motif information, and an unsupervised method

based on convolutional sparse coding to pre-train the filters

at each stage.

1. Introduction

Pedestrian detection is a key problem for surveillance,
automotive safety and robotics applications. The wide vari-

ety of appearances of pedestrians due to body pose, occlu-

sions, clothing, lighting and backgrounds makes this task
challenging.

All existing state-of-the-art methods use a combination
of hand-crafted features such as Integral Channel Fea-

tures [9], HoG [5] and their variations [13, 33] and com-

binations [38], followed by a trainable classifier such as
SVM [13, 28], boosted classifiers [9] or random forests [7].

While low-level features can be designed by hand with good

success, mid-level features that combine low-level features
are difficult to engineer without the help of some sort of

learning procedure. Multi-stage recognizers that learn hier-

archies of features tuned to the task at hand can be trained
end-to-end with little prior knowledge. Convolutional Net-

works (ConvNets) [23] are examples of such hierarchical
systems with end-to-end feature learning that are trained

in a supervised fashion. Recent works have demonstrated

the usefulness of unsupervised pre-training for end-to-end
training of deep multi-stage architectures using a variety

of techniques such as stacked restricted Boltzmann ma-

chines [16], stacked auto-encoders [4] and stacked sparse
auto-encoders [32], and using new types of non-linear trans-

forms at each layer [17, 20].

Figure 1: 128 9 × 9 filters trained on grayscale INRIA im-

ages using Algorithm 1. It can be seen that in addition to edge

detectors at multiple orientations, our systems also learns more

complicated features such as corner and junction detectors.

Supervised ConvNets have been used by a number of au-

thors for such applications as face, hand detection [37, 29,

15, 31, 14, 36]. More recently, a large ConvNet by [21]
achieved a breakthrough on a 1000-class ImageNet detec-

tion task. The main contribution of this paper is to show

that the ConvNet model, with a few important twists, con-
sistently yields state of the art and competitive results on

all major pedestrian detection benchmarks. The system

uses unsupervised convolutional sparse auto-encoders to
pre-train features at all levels from the relatively small IN-

RIA dataset [5], and end-to-end supervised training to train

the classifier and fine-tune the features in an integrated fash-
ion. Additionally, multi-stage features with layer-skipping

connections enable output stages to combine global shape
detectors with local motif detectors.

Processing speed in pedestrian detection has recently

seen great progress, enabling real-time operation with-

out sacrificing quality. [3] manage to entirely avoid image
rescaling for detection while observing quality improve-

ments. While processing speed is not the focus of this pa-

per, features and classifier approximations introduced by [8]
and [3] may be applicable to deep learning models for faster

detection, in addition to GPU optimizations.
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2. Learning Feature Hierarchies

Much of the work on pedestrian detection have focused
on designing representative and powerful features [5, 9, 8,

38]. In this work, we show that generic feature learning al-

gorithms can produce successful feature extractors that can
achieve state-of-the-art results.

Supervised learning of end-to-end systems on images

have been shown to work well when there is abundant la-
beled samples [23], including for detection tasks [37, 29,

15, 31, 14, 36]. However, for many input domains, it is

hard to find adequate number of labeled data. In this case,
one can resort to designing useful features by using domain

knowledge, or an alternative way is to use unsupervised

learning algorithms. Recently unsupervised learning algo-
rithms have been demonstrated to produce good features for

generic object recognition problems [24, 25, 18, 20].
In [16], it was shown that unsupervised learning can be

used to train deep hierarchical models and the final repre-

sentation achieved is actually useful for a variety of differ-
ent tasks [32, 24, 4]. In this work, we also follow a similar

approach and train a generic unsupervised model at each

layer using the output representation from the layer before.
This process is then followed by supervised updates to the

whole hierarchical system using label information.

Figure 2: A subset of 7 × 7 second layer filters trained on

grayscale INRIA images using Algorithm 2. Each row in the fig-

ure shows filters that connect to a common output feature map.

It can be seen that they extract features at similar locations and

shapes, e.g. the bottom row tends to aggregate horizontal features

towards the bottom of the filters.

2.1. Hierarchical Model

A hierarchical feature extraction system consists of mul-

tiple levels of feature extractors that perform the same fil-
tering and non-linear transformation functions in successive

layers. Using a particular generic parametrized function one

can then map the inputs into gradually more higher level (or
abstract) representations [23, 16, 4, 32, 24]. In this work

we use sparse convolutional feature hierarchies as proposed

in [20]. Each layer of the unsupervised model contains a
convolutional sparse coding algorithm and a predictor func-

tion that can be used for fast inference. After the last layer

a classifier is used to map the feature representations into

class labels. Both the sparse coding dictionary and the pre-
dictor function do not contain any hard-coded parameter

and are trained from the input data.

The training procedure for this model is similar to [16].

Each layer is trained in an unsupervised manner using the
representation from previous layer (or the input image for

the initial layer) separately. After the whole multi-stage sys-

tem is trained in a layer-wise fashion, the complete architec-
ture followed by a classifier is fine-tuned using labeled data.

2.2. Unsupervised Learning

Recently sparse coding has seen much interest in many
fields due to its ability to extract useful feature representa-

tions from data, The general formulation of sparse coding is

a linear reconstruction model using an overcomplete dictio-
naryD ∈ R

m×n wherem > n and a regularization penalty

on the mixing coefficients z ∈ R
n.

z∗ = argmin
z
‖x−Dz‖22 + λs(z) (1)

The aim is to minimize equation 1 with respect to z to obtain
the optimal sparse representation z∗ that correspond to input
x ∈ R

m. The exact form of s(z) depends on the particular
sparse coding algorithm that is used, here, we use the ‖.‖1
norm penalty, which is the sum of the absolute values of

all elements of z. It is immediately clear that the solution of
this system requires an optimization process. Many efficient

algorithms for solving the above convex system has been

proposed in recent years [1, 6, 2, 26]. However, our aim is
to also learn generic feature extractors. For that reason we

minimize equation 1 wrt D too.

z∗,D∗ = argmin
z,D
‖x−Dz‖22 + λ‖z‖1 (2)

This resulting equation is non-convex inD and z at the same
time, however keeping one fixed, the problem is still convex

wrt to the other variable. All sparse modeling algorithms

that adopt the dictionary matrix D exploit this property
and perform a coordinate descent like minimization pro-

cess where each variable is updated in succession. Follow-

ing [30] many authors have used sparse dictionary learning
to represent images [27, 1, 19]. However, most of the sparse

coding models use small image patches as input x to learn

the dictionaryD and then apply the resulting model to every
overlapping patch location on the full image. This approach

assumes that the sparse representation for two neighboring
patches with a single pixel shift is completely independent,

thus produces very redundant representations. [20, 39] have

introduced convolutional sparse modeling formulations for
feature learning and object recognition and we use the Con-

volutional Predictive Sparse Decomposition (CPSD) model

proposed in [20] since it is the only convolutional sparse
codingmodel providing a fast predictor function that is suit-

able for building multi-stage feature representations. The



particular predictor function we use is similar to a single

layer ConvNet of the following form:

f(x; g, k, b) = z̃ = {z̃j}j=1..n (3)

z̃j = gj × tanh(x⊗ kj + bj) (4)

where ⊗ operator represents convolution operator that ap-

plies on a single input and single filter. In this formulation

x is a p × p grayscale input image, k ∈ R
n×m×m is a set

of 2D filters where each filter is kj ∈ R
m×m, g ∈ R

n and

b ∈ R
n are vectors with n elements, the predictor output

z̃ ∈ R
n×p−m+1×p−m+1 is a set of feature maps where each

of z̃j is of size p−m+1×p−m+1. Considering this gen-
eral predictor function, the final form of the convolutional

unsupervised energy for grayscale inputs is as follows:

ECPSD = EConvSC + βEPred (5)

EConvSC =
∥

∥

∥x−
∑

j
Dj ⊗ zj

∥

∥

∥

2

2

+ λ‖z‖1 (6)

EPred = ‖z∗ − f(x; g, k, b)‖22 (7)

where D is a dictionary of filters the same size as k and
β is a hyper-parameter. The unsupervised learning proce-

dure is a two step coordinate descent process. At each it-

eration, (1) Inference: The parameters W = {D, g, k, b}
are kept fixed and equation 6 is minimized to obtain the

optimal sparse representation z∗, (2) Update: Keeping z∗

fixed, the parameters W updated using a stochastic gradi-

ent step: W ← W − η ∂ECPSD

∂W
where η is the learning rate

parameter. The inference procedure requires us to carry out
the sparse coding problem solution. For this step we use

the FISTA method proposed in [2]. This method is an ex-

tension of the original iterative shrinkage and thresholding
algorithm [6] using an improved step size calculation with

a momentum-like term. We apply the FISTA algorithm in

the image domain adopting the convolutional formulation.
For color images or other multi-modal feature represen-

tations, the input x is a set of feature maps indexed by i and
the representation z is a set of feature maps indexed by j
for each input map i. We define a map of connections P
from input x to features z. A jth output feature map is con-
nected to a set Pj of input feature maps. Thus, the predictor

function in Algorithm 1 is defined as:

z̃j = gj × tanh





∑

i∈Pj

(xi ⊗ kj,i) + bj



 (8)

and the reconstruction is computed using the inverse map

P̄ :

EConvSC =
∑

i

‖xi −
∑

j∈P̄i

Di,j ⊗ zj‖
2
2 + λ‖z‖1 (9)

For a fully connected layer, all the input features are con-

nected to all the output features, however it is also common

to use sparse connection maps to reduce the number of pa-

rameters. The online training algorithm for unsupervised
training of a single layer is:

Algorithm 1 Single layer unsupervised training.

functionUnsup(x,D, P, {λ, β}, {g, k, b}, η)
Set: f(x; g, k, b) from eqn 8,W p = {g, k, b}.
Initialize: z = ∅, D andW p randomly.

repeat

Perform inference, minimize equation 9 wrt z using
FISTA [2]
Do a stochastic update on D and W p. D ← D −
η ∂EConvSC

∂D
andW p ←W p − η ∂EPred

∂Wp

until convergence
Return: {D, g, k, b}

end function

2.3. Non­Linear Transformations

Once the unsupervised learning for a single stage is com-

pleted, the next stage is trained on the feature representation

from the previous one. In order to obtain the feature repre-
sentation for the next stage, we use the predictor function

f(x) followed by non-linear transformations and pooling.

Following the multi-stage framework used in [20], we ap-
ply absolute value rectification, local contrast normalization

and average down-sampling operations.

Absolute Value Rectification is applied component-wise to
the whole feature output from f(x) in order to avoid cancel-
lation problems in contrast normalization and pooling steps.

Local Contrast Normalization is a non-linear process that
enhances the most active feature and suppresses the other

ones. The exact form of the operation is as follows:

vi = xi − xi ⊗ w , σ =

√

∑

i

w ⊗ v2i (10)

yi =
vi

max(c, σ)
(11)

where i is the feature map index and w is a 9 × 9 Gaus-
sian weighting function with normalized weights so that
∑

ipq wpq = 1. For each sample, the constant c is set to

mean(σ) in the experiments.
Average Down-Sampling operation is performed using a

fixed size boxcar kernel with a certain step size. The size

of the kernel and the stride are given for each experiment in
the following sections.

Once a single layer of the network is trained, the features
for training a successive layer is extracted using the predic-

tor function followed by non-linear transformations. De-

tailed procedure of training an N layer hierarchical model
is explained in Algorithm 2.

The first layer features can be easily displayed in the pa-

rameter space since the parameter space and the input space
is same, however visualizing the second and higher level

features in the input space can only be possible when only



Algorithm 2 Multi-layer unsupervised training.

functionHierarUnsup(x, ni,mi, Pi, {λi, βi}, {wi, si},
i = {1..N}, ηi)
Set: i = 1, X1 = x, lcn(x) using equations 10-11,

ds(X,w, s) as the down-sampling operator using box-
car kernel of size w × w and stride of size s in both

directions.

repeat

Set: Di, ki ∈ R
ni×mi×mi , gi, bi ∈ R

ni .

{Di, ki, gi, ki, bi} =
Unsup(Xi,Di, Pi, {λi, βi}, {gi, ki, bi}, ηi)

z̃ = f(Xi; gi, ki, bi) using equation 8.
z̃ = |z̃|
z̃ = lcn(z̃)
Xi+1 = ds(z̃, wi, si)
i = i+ 1

until i = N
end function

Figure 3: A multi-scale convolutional network. The top
row of maps constitute a regular ConvNet [17]. The bottom

row in which the 1st stage output is branched, subsampled

again and merged into the classifier input provides a multi-
stage component to the classifier stage. The multi-stage fea-

tures coming out of the 2nd stage extracts a global structure
as well as local details.

invertible operations are used in between layers. However,

since we use absolute value rectification and local contrast
normalization operations mapping the second layer features

onto input space is not possible. In Figure 2 we show a sub-
set of 1664 second layer features in the parameter space.

2.4. Supervised Training

After the unsupervised learning of the hierarchical fea-

ture extraction system is completed using Algorithm 2, we

append a classifier function, usually in the form of a linear
logistic regression, and perform stochastic online training

using labeled data.

2.5. Multi­Stage Features

ConvNets are usually organized in a strictly feed-

forward manner where one layer only takes the output of
the previous layer as input. Features extracted this way tend

to be high level features after a few stages of convolutions

and subsampling. By branching lower levels’ outputs into

the top classifier (Fig. 3), one produces features that extract
both global shapes and structures and local details, such as

a global silhouette and face components in the case of hu-

man detection. Contrary to [12], the output of the first stage
is branched after the non-linear transformations and pool-

ing/subsampling operations rather than before.

We also use color information on the training data. For
this purpose we convert all images into YUV image space

and subsample the UV features by 3 since color information
is in much lower resolution. Then at the first stage, we keep

feature extraction systems for Y and UV channels separate.

On the Y channel, we use 32 7× 7 features followed by ab-
solute value rectification, contrast normalization and 3 × 3
subsampling. On the subsampled UV channels, we extract

6 5×5 features followed by absolute value rectification and
contrast normalization, skipping the usual subsampling step

since it was performed beforehand. These features are then

concatanated to produce 38 feature maps that are input to
the first layer. The second layer feature extraction takes 38
feature maps and produces 68 output features using 2040
9 × 9 features. A randomly selected 20% of the connec-
tions in mapping from input features to output features is

removed to limit the computational requirements and break
the symmetry [23]. The output of the second layer features

are then transformed using absolute value rectification and

contrast normalization followed by 2×2 subsampling. This
results in 17824 dimensional feature vector for each sample

which is then fed into a linear classifier.

In Table 1, we show that multi-stage features improve ac-
curacy for different tasks, with different magnitudes. Great-

est improvements are obtained for pedestrian detection and

traffic-sign classification while only minimal gains are ob-
tained for house numbers classification, a less complex task.

2.6. Bootstrapping

Bootstrapping is typically used in detection settings by

multiple phases of extracting the most offending negative

answers and adding these samples to the existing dataset
while training. For this purpose, we extract 3000 nega-

tive samples per bootstrapping pass and limit the number

of most offending answers to 5 for each image. We perform
3 bootstrapping passes in addition to the original training

phase (i.e. 4 training passes in total).

2.7. Non­Maximum Suppression

Non-maximum suppression (NMS) is used to resolve

conflicts when several bounding boxes overlap. For both
INRIA and Caltech experiments we use the widely accepted

PASCAL overlap criteria to determine a matching score be-

tween two bounding boxes ( intersection
union

) and if two boxes
overlap by more than 60%, only the one with the highest

score is kept. In [10]’s addendum, the matching criteria is

modified by replacing the union of the two boxes with the
minimum of the two. Therefore, if a box is fully contained

in another one the small box is selected. The goal for this



Task Single-Stage features Multi-Stage features Improvement %

Pedestrians detection (INRIA) (Fig. 4) 23.39% 17.29% 26.1%

Traffic Signs classification (GTSRB) [35] 1.80% 0.83% 54%

House Numbers classification (SVHN) [34] 5.54% 5.36% 3.2%

Table 1: Error rates improvements of multi-stage features over single-stage features for different types of objects detection and

classification. Improvements are significant for multi-scale and textured objects such as traffic signs and pedestrians but minimal for house

numbers.

modification is to avoid false positives that are due to pedes-
trian body parts. However, a drawback to this approach

is that it always disregards one of the overlapping pedes-
trians from detection. Instead of changing the criteria, we

actively modify our training set before each bootstrapping

phase. We include body part images that cause false posi-
tive detection into our bootstrapping image set. Our model

can then learn to suppress such responses within a positive

window and still detect pedestrians within bigger windows
more reliably.

3. Experiments

We evaluate our system on 5 standard pedestrian de-
tection datasets. However, like most other systems, we

only train on the INRIA dataset. We also demonstrate im-

provements brought by unsupervised training and multi-
stage features. In the following we name our model Con-

vNet with variants of unsupervised (Convnet-U) and fully-

supervised training (Convnet-F) and multi-stage features
(Convnet-U-MS and ConvNet-F-MS).

3.1. Data Preparation

The ConvNet is trained on the INRIA pedestrian

dataset [5]. Pedestrians are extracted into windows of 126
pixels in height and 78 pixels in width. The context ratio

is 1.4, i.e. pedestrians are 90 pixels high and the remaining

36 pixels correspond to the background. Each pedestrian
image is mirrored along the horizontal axis to expand the

dataset. Similarly, we add 5 variations of each original sam-

ple using 5 random deformations such as translations and
scale. Translations range from -2 to 2 pixels and scale ratios

from 0.95 to 1.05. These deformations enforce invariance
to small deformations in the input. The range of each de-

formation determines the trade-off between recognition and

localization accuracy during detection. An equal amount
of background samples are extracted at random from the

negative images and taking approximately 10% of the ex-

tracted samples for validation yields a validation set with
2000 samples and training set with 21845 samples. Note

that the unsupervised training phase is performed on this

initial data before the bootstrapping phase.

3.2. Evaluation Protocol

During testing and bootstrapping phases using the IN-

RIA dataset, the images are both up-sampled and sub-

sampled. The up-sampling ratio is 1.3 while the sub-
sampling ratio is limited by 0.75 times the network’s mini-

mum input (126×78). We use a scale stride of 1.10 between
each scale, while other methods typically use either 1.05 or

1.20 [11]. A higher scale stride is desirable as it implies less

computations.

For evaluation we use the bounding boxes files published
on the Caltech Pedestrian website 1 and the evaluation soft-

ware provided by Piotr Dollar (version 3.0.1). In an ef-

fort to provide a more accurate evaluation, we improved
on both the evaluation formula and the INRIA annotations

as follows. The evaluation software was slightly modified

to compute the continuous area under curve (AUC) in the
entire [0, 1] range rather than from 9 discrete points only

(0.01, 0.0178, 0.0316, 0.0562, 0.1, 0.1778, 0.3162, 0.5623

and 1.0 in version 3.0.1). Instead, we compute the entire
area under the curve by summing the areas under the piece-

wise linear interpolation of the curve, between each pair of
points. In addition, we also report a ’fixed’ version of the

annotations for INRIA dataset, which has missing positive

labels. The added labels are only used to avoid counting
false errors and wrongly penalizing algorithms. The modi-

fied code and extra INRIA labels are available at 2. Table 2

reports results for both original and fixed INRIA datasets.
Notice that the continuous AUC and fixed INRIA annota-

tions both yield a reordering of the results (see supplemen-

tary material for further evidence that the impact of these
modifications is significant enough to be used). To avoid

ambiguity, all results with the original discrete AUC are re-

ported in the supplementary paper.

To ensure a fair comparison, we separated systems
trained on INRIA (the majority) from systems trained on

TUD-MotionPairs and the only system trained on Caltech

in table 2. For clarity, only systems trained on INRIA were
represented in Figure 5, however all results for all systems

are still reported in table 2.

3.3. Results

In Figure 4, we plot DET curves, i.e. miss rate ver-

sus false positives per image (FPPI), on the fixed INRIA
dataset and rank algorithms along two measures: the er-

ror rate at 1 FPPI and the area under curve (AUC) rate
in the [0, 1] FPPI range. This graph shows the indi-

1http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians
2http://cs.nyu.edu/∼sermanet/data.html#inria

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://cs.nyu.edu/~sermanet/data.html#inria
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Figure 4: DET curves on the fixed-INRIA dataset for large pedestrians measure report false positives per image (FPPI) against miss

rate. Algorithms are sorted from top to bottom using the proposed continuous area under curve measure between 0 and 1 FPPI. On the

right, only the ConvNet variants are displayed to highlight the individual contributions of unsupervised learning (ConvNet-U) and

multi-stage features learning (ConvNet-F-MS) and their combination (ConvNet-U-MS) compared to the fully-supervised system

without multi-stage features (ConvNet-F).

vidual contributions of unsupervised learning (ConvNet-
U) and multi-stage features learning (ConvNet-F-MS) and

their combination (ConvNet-U-MS) compared to the fully-

supervised system without multi-stage features (ConvNet-
F). With 17.1% error rate, unsupervised learning exhibits

the most improvements compared to the baseline ConvNet-

F (23.39%). Multi-stage features without unsupervised
learning reach 17.29% error while their combination yields

the competitive error rate of 10.55%.

Extensive results comparison of all major pedestrian

datasets and published systems is provided in Table 2. Mul-

tiple types of measures proposed by [10] are reported. For
clarity, we also plot in Figure 5 two of these measures,

’reasonable’ and ’large’, for INRIA-trained systems. The

’large’ plot shows that the ConvNet results in state-of-the-
art performancewith some margin on the ETH, Caltech and

TudBrussels datasets and is closely behind LatSvm-V2 and

VeryFast for INRIA and Daimler datasets. In the ’reason-
able’ plot, the ConvNet yields competitive results for IN-

RIA, Daimler and ETH datasets but performs poorly on the

Caltech dataset. We suspect the ConvNet with multi-stage
features trained at high-resolution is more sensitive to reso-

lution loss than other methods. In future work, a ConvNet
trained at multiple resolution will likely learn to use appro-

priate cues for each resolution regime.

4. Discussion

We have introduced a new feature learning model with

an application to pedestrian detection. Contrary to popular

models where the low-level features are hand-designed, our
model learns all the features at all levels in a hierarchy. We

used the method of [20] as a baseline, and extended it by

combining high and low resolution features in the model,
and by learning features on the color channels of the in-

put. Using the INRIA dataset, we have shown that these

improvements provide clear performance benefits. The re-
sulting model provides state of the art or competitive re-

sults on most measures of all publicly available datasets.
Small-scale pedestrian measures can be improved in future

work by training multiple scale models relying less on high-

resolution details. While computational speed was not the
focus and hence was not reported here, our model was suc-

cessfully used with near real-time speed in a haptic belt sys-

tem [22] using parallel hardware. In future work, models
designed for speed combined to highly optimized parallel

computing on graphics cards is expected to yield competi-

tive computational performance.
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Figure 5: Reasonable and Large measures for all INRIA-trained systems on all major datasets, using the proposed continuous

AUC percentage. The AUC is computed from DET curves (smaller AUC means more accuracy and less false positives). For a clearer

overall performance, each ConvNet point is connected by dotted lines. While only the ’reasonable’ and ’large’ measures are plotted here,

all measures are reported in table 2. The ConvNet system yields state-of-the-art or competitive results on most datasets and measures,

except for the low resolutions measures on the Caltech dataset because of higher reliance on high-resolution cues than other methods.

Trained on INRIA

ConvNet ChnFtrs CrossTalk FPDW FeatSynth FtrMine HOG HikSvm HogLbp LatSvm-V1 LatSvm-V2 MLS MultiFtr Pls PoseInv Shapelet VJ VeryFast

All - AUC %

INRIA-fixed 12.0 13.3 12.7 13.6 19.0 43.8 32.9 29.9 26.2 28.8 12.9 17.8 24.2 29.0 66.7 66.8 59.4 10.3
INRIA 12.7 13.9 12.9 14.0 19.6 44.8 34.3 31.4 28.0 29.8 13.3 18.2 25.3 30.1 70.1 68.7 60.7 10.5
Daimler 58.6 - - - - - 67.9 62.4 69.8 64.2 62.3 51.8 68.8 - - 94.9 94.8 -
ETH 47.1 48.7 43.8 51.5 - - 54.9 61.6 51.1 69.1 49.3 42.8 51.7 47.4 86.5 85.6 84.5 46.9

Caltech-UsaTest 90.9 77.1 77.8 78.1 78.1 86.7 85.5 86.8 87.9 91.7 84.2 83.4 83.4 81.2 92.6 95.4 99.1 -
TudBrussels 66.8 57.6 55.0 59.0 - - 73.6 76.4 77.2 85.7 67.2 59.2 70.5 66.1 83.8 93.8 92.7 -

Reasonable - AUC % ->50 pixels & no/partial occlusion

INRIA-fixed 12.0 13.3 12.7 13.6 19.0 43.8 32.9 29.9 26.2 28.8 12.9 17.8 24.2 29.0 66.7 66.8 59.4 10.3
INRIA 12.7 13.9 12.9 14.0 19.6 44.8 34.3 31.4 28.0 29.8 13.3 18.2 25.3 30.1 70.1 68.7 60.7 10.5
Daimler 24.9 - - - - - 46.2 38.9 40.3 47.2 29.2 18.3 45.5 - - 90.2 91.3 -
ETH 38.9 44.2 39.1 46.8 - - 51.1 59.2 43.7 66.6 41.1 37.1 47.5 42.2 85.2 83.9 83.6 42.5

Caltech-UsaTest 71.5 46.4 46.0 46.9 49.2 66.3 57.8 62.0 62.2 73.4 56.0 51.9 59.3 52.9 78.2 87.0 91.8 -
TudBrussels 59.1 48.8 47.0 50.4 - - 68.1 72.4 71.8 84.0 59.6 52.0 64.8 59.1 80.8 92.5 91.1 -

Large - AUC % ->100 pixels

INRIA-fixed 10.5 11.6 10.7 11.7 17.3 42.8 31.8 28.5 24.8 27.2 9.9 16.6 22.6 27.8 66.4 66.1 59.0 9.1
INRIA 11.2 12.2 11.0 12.1 18.0 43.9 33.2 30.0 26.6 28.2 10.3 17.0 23.7 28.8 69.9 68.1 60.3 9.4
Daimler 7.8 - - - - - 31.7 25.2 11.8 22.9 6.9 13.9 30.9 - - 72.3 83.9 -
ETH 24.4 30.2 28.2 33.4 - - 33.1 36.4 29.5 47.6 26.8 24.8 35.1 26.6 63.9 75.8 76.7 24.4

Caltech-UsaTest 14.8 24.1 25.8 26.4 28.6 47.8 28.0 26.5 18.4 40.7 22.5 22.7 34.3 30.4 54.5 69.6 80.9 -
TudBrussels 33.5 36.2 37.3 35.0 - - 56.2 52.2 46.3 64.5 43.1 41.8 55.5 43.3 70.0 80.3 86.0 -

Near - AUC % ->80 pixels

INRIA-fixed 11.3 11.6 11.0 11.9 17.3 42.6 31.5 28.5 24.7 27.5 11.1 16.5 22.7 27.7 66.0 66.1 58.7 9.7
INRIA 11.9 12.2 11.2 12.3 17.9 43.7 32.9 30.0 26.5 28.5 11.5 16.8 23.8 28.8 69.4 68.1 60.0 9.9
Daimler 10.0 - - - - - 36.8 30.4 10.9 27.6 10.8 14.7 33.7 - - 78.3 86.3 -
ETH 28.9 35.2 30.9 37.5 - - 40.5 45.6 31.7 52.2 31.4 29.5 39.4 34.1 80.6 79.9 80.0 29.8

Caltech-UsaTest 27.3 27.4 28.9 28.4 29.5 48.9 33.1 34.3 24.7 47.2 26.7 29.1 40.8 31.2 66.8 75.7 85.3 -
TudBrussels 40.4 39.5 40.3 38.8 - - 61.1 58.7 50.5 70.9 47.1 45.3 57.2 49.6 80.0 85.6 89.0 -

Medium - AUC % - 30-80 pixels

INRIA-fixed 33.1 100.0 99.7 100.0 100.0 100.0 100.0 100.0 85.3 85.3 99.7 100.0 86.1 100.0 99.7 99.7 91.5 27.9
INRIA 33.1 100.0 99.7 100.0 100.0 100.0 100.0 100.0 85.3 85.3 99.7 100.0 86.1 100.0 99.7 99.7 91.5 27.9
Daimler 54.2 - - - - - 62.1 54.4 70.7 58.5 60.0 44.7 63.2 - - 95.2 93.7 -
ETH 55.4 42.9 42.1 45.4 - - 49.9 54.7 61.2 71.5 57.3 43.9 47.3 45.0 73.9 74.5 71.2 48.3

Caltech-UsaTest 92.2 69.5 70.6 70.6 70.2 82.1 81.4 82.6 91.5 91.1 80.8 80.6 77.8 75.8 88.8 94.7 98.7 -
TudBrussels 67.8 57.4 55.5 59.7 - - 71.4 74.9 82.9 85.5 68.2 59.1 68.7 65.0 79.4 94.1 91.7 -

Table 2: Performance of all systems on all datasets using the proposed continuous AUC percentage over the range [0,1] from DET

curves. The top performing results (among INRIA-trained models) are highlighted in bold for each row. DET curves plot false positives

per image (FPPI) against miss rate. Hence a smaller AUC% means a more accurate system with lower amount of false positives. The

ConvNet model (ConvNet-U-MS here) holds several state-of-the-art or competitive scores. We report the multiple measures introduced

by [10] for all major pedestrian datasets. For readibility, not all measures are reported nor are models not trained on INRIA. All results

however are reported in the supplementary paper.
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